Part Number Hot Search : 
1A66B C5050 MBR1645 AD1866 NC7SZ32M 3SMC120A 078F1 16160
Product Description
Full Text Search
 

To Download APT100GT60JRDQ4 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  symbol parameter ratings unit v ces collector-emitter voltage 600 volts v ge gate-emitter voltage 30 i c1 continuous collector current @ t c = 25c 148 amps i c2 continuous collector current @ t c = 100c 80 i cm pulsed collector current 1 300 ssoa switching safe operating area @ t j = 150c 300a @ 600v p d total power dissipation 500 watts t j , t stg operating and storage junction temperature range -55 to 150 c maximum ratings all ratings: t c = 25c unless otherwise speci ? ed. symbol characteristic / test conditions min typ max unit v (br)ces collector-emitter breakdown voltage (v ge = 0v, i c = 4ma) 600 - - volts v ge(th) gate threshold voltage (v ce = v ge , i c = 1.5ma, t j = 25c) 345 v ce(on) collector emitter on voltage (v ge = 15v, i c = 100a, t j = 25c) 1.7 2.1 2.5 collector emitter on voltage (v ge = 15v, i c = 100a, t j = 125c) - 2.5 - i ces collector cut-off current (v ce = 600v, v ge = 0v, t j = 25c) 2 --5 0 a collector cut-off current (v ce = 600v, v ge = 0v, t j = 125c) 2 - - 1500 i ges gate-emitter leakage current (v ge = 30v) - - 300 na static electrical characteristics caution: these devices are sensitive to electrostatic discharge. proper handling procedures should be followed . microsemi website - http://www.microsemi.com 052-6294 rev c 3 - 2012 APT100GT60JRDQ4 600v, 100a, v ce(on) = 2.1v typical thunderbolt igbt ? the thunderbolt igbt ? is a new generation of high voltage power igbts. using non-punch-through technology, the thunderbolt igbt ? offers superior rugged- ness and ultrafast switching speed. s o t - 2 2 7 is ot op ? file # e145592 "ul recognized" g e e c features low forward voltage drop low tail current integrated gate resistor low emi, high reliability rohs compliant rbsoa and scsoa rated high frequency switching to 50khz ultra low leakage current downloaded from: http:///
052-6294 rev c 3 - 2012 dynamic characteristic APT100GT60JRDQ4 symbol characteristic test conditions min typ max unit c ies input capacitance v ge = 0v, v ce = 25v f = 1mhz - 5150 - pf c oes output capacitance - 475 - c res reverse transfer capacitance - 295 - v gep gate-to-emitter plateau voltage gate charge v ge = 15v v ce = 300v i c = 100a - 8.0 - v q g total gate charge 3 - 460 - nc q ge gate-emitter charge - 40 - q gc gate-collector charge - 210 - ssoa switching safe operating area t j = 150c, r g = 4.3 , v ge = 15v, l = 100 h, v ce = 600v 300 a t d(on) turn-on delay time inductive switching (25c) v cc = 400v v ge = 15v i c = 100a r g = 4.3 t j = +25c -4 0 - ns t r current rise time - 75 - t d(off) turn-off delay time - 320 - t f current fall time - 100 - e on1 turn-on switching energy 4 - 3250 - j e on2 turn-on switching energy 5 - 3525 - e off turn-off switching energy 6 - 3125 - t d(on) turn-on delay time inductive switching (125c) v cc = 400v v ge = 15v i c = 100a r g = 4.3 t j = +125c -4 0 - ns t r current rise time - 75 - t d(off) turn-off delay time - 350 - t f current fall time - 100 - e on1 turn-on switching energy 4 - 3275 - j e on2 turn-on switching energy 5 - 4650 - e off turn-off switching energy 6 - 3750 - symbol characteristic / test conditions min typ max unit r jc junction to case (igbt) - - 0.25 c/w r jc junction to case (diode) - - 0.33 w t package weight - 29.2 - g torque terminals and mounting screws - - 10 inlbf - - 1.1 nm v isolation rms voltage (50-60hz sinusoidal waveform from terminals to mounting base for 1 min.) 2500 - - volts 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages. 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to z a the igbt turn-on loss. tested in inductive switching test circuit shown in ? gure 21, but with a silicon carbide diode. 5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance not including gate driver impedance. thermal and mechanical characteristics microsemi reserves the right to change, without notice, the speci? cations and information contained herein. downloaded from: http:///
052-6294 rev c 3 - 2012 typical performance curves APT100GT60JRDQ4 v gs(th) , threshold voltage v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) v ce = 480v v ce = 300v v ce = 120v i c = 100a t j = 25c 250s pulse test<0.5 % duty cycle 200180 160 140 120 100 8060 40 20 0 200180 160 140 120 100 8060 40 20 0 4.54.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 1.151.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 300250 200 150 100 50 0 1614 12 10 86 4 2 0 4 3.5 3 2.5 2 1.5 1 0.5 0 200180 160 140 120 100 8060 40 20 0 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(v ge = 15v) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction temperature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temperature t c = 125 c 12, 13, &15v 10v 9v 8v 7v t j = -55c t j = 25c. 250s pulse test <0.5 % duty cycle i c = 200a i c = 100a i c = 50a v ge = 15v. 250s pulse test <0.5 % duty cycle i c = 200a i c = 100a i c = 50a 0 0.5 1 1.5 2 2.5 3 3.5 4 0 5 10 15 20 25 30 0 2 4 6 8 10 0 100 200 300 400 500 6 8 10 12 14 16 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 t c = 25c t c = -55c v ge = 15v 6v t c = 25c t c = 125 c downloaded from: http:///
052-6294 rev c 3 - 2012 typical performance curves APT100GT60JRDQ4 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 400v r g = 4.3 l = 100h switching energy losses (j) e on2 , turn on energy loss (j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (j) e off , turn off energy loss (j) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-of delay time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector current i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn of energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junction temperature v ce = 400v v ge = +15v r g = 4.3 r g = 4.3, l = 100 h, v ce = 400v v ce = 400v t j = 25c , or 125c r g = 4.3 l = 100h 3530 25 20 15 10 50 250200 150 100 50 0 1600014000 12000 10000 80006000 4000 2000 0 3500030000 25000 20000 15000 10000 5000 0 v ge = 15v t j = 125c, v ge = 15v t j = 25 or 125c,v ge = 15v t j = 25c, v ge = 15v t j = 125c t j = 25c v ce = 400v v ge = +15v r g = 4.3 t j = 125c t j = 25c 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 25 50 75 100 125 150 175 200 225 0 25 50 70 100 125 150 175 200 225 0 10 20 30 40 50 0 25 50 75 100 125 r g = 4.3, l = 100 h, v ce = 400v 450400 350 300 250 200 150 100 50 0 200180 160 140 120 100 8060 40 20 0 1200010000 80006000 4000 2000 0 1600014000 12000 10000 80006000 4000 2000 0 v ce = 400v v ge = +15v r g = 4.3 e of , 200a e on2, 200a e of , 100a e on2, 100a e of , 50a e on2, 50a v ce = 400v v ge = +15v t j = 125c e of , 200a e on2, 200a e of , 100a e on2, 100a e of , 50a e on2, 50a downloaded from: http:///
typical performance curves APT100GT60JRDQ4 052-6294 rev c 3 - 2012 0.300.25 0.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum ef ective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 10,000 5,0001,000 500100 350300 250 200 150 100 50 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operating area 0 10 20 30 40 50 0 100 200 300 400 500 600 700 figure 19b, transient thermal impedance model 10 20 30 40 50 60 70 80 90 100 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current 100 5010 51 c 0es c res 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc c ies t j = 125 c d = 50 %v ce = 400v r g = 4.3 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: t c = 75 c t c = 100 c 0.0587 0.132 0.0587 0.0120 0.420 4.48 dissipated powe r (watts ) t j (c) t c (c) z ex t are the external therma l impedances: case to sink, sink to ambient, etc. set to zero when modeling onl y the case to junction. z ex t downloaded from: http:///
052-6294 rev c 3 - 2012 APT100GT60JRDQ4 figure 22, turn-on switching waveforms and dei nitions figure 23, turn-of switching waveforms and dei nitions t j = 125c collector current collectorvoltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collectorvoltage collector current gate voltage switching energy 0 90% t d(of ) 10% t f 90% i c a d.u.t. v ce figure 21, inductive switching test circui t v cc apt100dq60 downloaded from: http:///
typical performance curves APT100GT60JRDQ4 052-6294 rev c 3 - 2012 static electrical characteristics dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise specii e d . ultrafast soft recovery anti-parallel diode symbol characteristic / test conditions APT100GT60JRDQ4 unit i f(av) maximum average forward current (t c = 88c, duty cycle = 0.5) 100 amps i f(rms) rms forward current (square wave, 50% duty) 146 i fsm non-repetitive forward surge current (t j = 45c, 8.3 ms) 1000 symbol characteristic / test conditions min type max unit v f forward voltage i f = 100a 1.6 2.2 volts i f = 200a 2.05 i f = 100a, t j = 125c 1.28 symbol characteristic test conditions min typ max unit t rr reverse recovery time i f = 1a, di f /dt = -100a/ s , v r = 30v, t j = 25 c - 34 - ns t rr reverse recovery time i f = 100a, di f /dt = -200a/ s v r = 400v, t c = 25 c - 160 - q rr reverse recovery charge - 290 - nc i rrm maximum reverse recovery current - 5 - amps t rr reverse recovery time i f = 100a, di f /dt = -200a/ s v r = 400v, t c = 125 c - 220 -n s q rr reverse recovery charge - 1530 - nc i rrm maximum reverse recovery current - 13 - amps t rr reverse recovery time i f = 100a, di f /dt = -1000a/ s v r = 400v, t c = 125 c - 100 - ns q rr reverse recovery charge - 2890 -n c i rrm maximum reverse recovery current - 44 - amps z jc , thermal impedance (c/w) figure 24b, transient thermal impedance model 0.350.30 0.25 0.20 0.15 0.10 0.05 0 0.5 single pulse 0.1 0.3 0.7 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: d = 0.9 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 rectangular pulse duration (seconds) figure 24a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.0673 0.188 0.0743 0.0182 0.361 5.17 dissipated powe r (watts ) t j (c ) t c (c) z ext are the external therma l impedances: case to sink, sink to ambient, etc. set to zero when modeling onl y the case to junction. z ext downloaded from: http:///
052-6294 rev c 3 - 2012 typical perfromance curves APT100GT60JRDQ4 t j =125 c v r =400v 50a 100a 200a duty cycle = 0.5 t j =175 c 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 180160 140 120 100 8060 40 20 0 t j , junction temperature ( c) case temperature ( c) figure 6. dynamic parameters vs. junction temperature figure 7. maximum average fo rward current vs. casetempera ture v r , reverse voltage (v) figure 8. junction capacitance vs. reverse voltage q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 2. forward current vs. forward voltage figure 3. reverse recovery time vs. current rate of chan ge -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 4. reverse recovery charge vs. current rate of change figure 5. reverse recovery current vs. current rate of cha nge 0 0.5 1.0 1.5 2.0 2.5 3.0 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 t j = -55 c t j = 25 c t j = 125 c t j = 175 c t j =125 c v r =400v 100a 50a 200a 300250 200 150 100 50 0 40003500 3000 2500 2000 1500 1000 500 0 t j =125 c v r =400v 200a 100a 50a 300250 200 150 100 50 0 6050 40 30 20 10 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) q rr t rr q rr i rrm 1.21.0 0.8 0.6 0.4 0.2 0.0 14001200 1000 800600 400 200 0 t rr downloaded from: http:///
APT100GT60JRDQ4 052-6294 rev c 3 - 2012 sot-227 (isotop ? ) package outline 31.5 (1.240)31.7 (1.248) dimensions in millimeters and (inches ) 7.8 (.307)8.2 (.322) 30.1 (1.185)30.3 (1.193) 38.0 (1.496)38.2 (1.504) 14.9 (.587)15.1 (.594) 11.8 (.463)12.2 (.480) 8.9 (.350)9.6 (.378) hex nut m 4 (4 places ) 0.75 (.030)0.85 (.033) 12.6 (.496)12.8 (.504) 25.2 (0.992)25.4 (1.000) 1.95 (.077)2.14 (.084) * emitter/anode collector/cathode gate * r = 4.0 (.157) (2 places) 4.0 (.157)4.2 (.165) (2 places) w=4.1 (.161)w=4.3 (.169) h=4.8 (.187)h=4.9 (.193) (4 places) 3.3 (.129)3.6 (.143) * emitter/anode emitter/anode terminals ar e shorted internally. current handling capability is equal for either emitter/anode terminal . apt10035lll 4 3 1 2 5 5 zer o 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current . t rr - revers e r ecovery time, measured from zero crossing wher e diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero . 0.25 i rrm pearson 2878 current transformer di f /dt adjus t 30 h d.u.t. +18v 0v v r t rr / q rr wavefor m figure 32, diode test circuit figure 33, diode reverse recovery waveform and de? nitions downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT100GT60JRDQ4

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X